Abstract

The covalent attachment of an Arg-Gly-Asp (RGD) containing peptide to polypyrrole(PPy)-coated titanium substrates has been investigated in order to develop a bioactive material of potential use in orthopedic fields. Polypyrrole has been employed as the coating polymer because of its suitability to be electrochemically grown directly onto metallic substrates of different shapes, leading to remarkably adherent films. The synthetic peptide Cys-Gly-(Arg-Gly-Asp)-Ser-Pro-Lys, containing the cell-adhesive region of fibronectin(RGD), has been grafted to the polymer substrate via the cysteine residue using a procedure recently developed in the authors laboratory. The effectiveness of grafting was monitored by X-ray photoelectron spectroscopy (XPS), which assessed the presence of the peptide grafted onto the polymer surface exploiting the cysteine sulfur as target element. Neonatal rat calvarial osteoblasts were attached to RGD-modified PPy-coated Ti substrates at levels significantly greater than on unmodified PPy-coated Ti and glass coverslip substrates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.