Abstract

This paper reports the fabrication, characterization and simulation of electrospun polyacrylonitrile (PAN) nanofibers into pre-impregnated (prepreg) carbon fiber composites for different industrial applications. The electrospun PAN nanofibers were stabilized in air at 270 °C for one hour and then carbonized at 950 °C in an inert atmosphere (argon) for another hour before placing on the prepreg composites as top layers. The prepreg carbon fibers and carbonized PAN nanofibers were cured together following the prepreg composite curing cycles. Energy dispersive X-ray spectroscopy (EDX) was carried out to investigate the chemical compositions and elemental distribution of the carbonized PAN nanofibers. The EDX results revealed that the carbon weight % of approximately 66 (atomic % 72) was achieved in the PAN-derived carbon nanofibers along with nitrogen and lower amounts of nickel, oxygen and other impurities. Thermomechanical analysis (TMA) exhibited the glass transition regions in the prepreg nanocomposites and the significant dependence of coefficient of thermal expansion on the fiber directions. The highest value of coefficient of thermal expansion was observed in the temperature range of 118-139 °C (7.5×10-8 1/°C) for 0 degree nanocomposite scheme. The highest value of coefficient of thermal expansion was observed in the temperature range of 50-80 °C (37.5×10-6 1/°C) for 90 degree nanocomposite scheme. The test results were simulated using ANSYS software. The test results may be useful for the development of structural health monitoring of various composite materials for aircraft and wind turbine applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call