Abstract

AbstractPoly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) triblock copolymer (Pluronic F127) was modified by introducing poly(N‐isopropylacrylamide) (PNIPAM) at both the PEO ends, and the pentablock copolymer (PNIPAM41–F127–PNIPAM41, PN41) so prepared was characterized using gel permeation chromatography and 1H NMR spectroscopy. The degree of polymerization of NIPAM blocks at the two ends was 41. The solution behaviour and microstructure of PN41 aggregates in water were examined using UV–visible spectroscopy, micro‐differential scanning calorimetry and small‐angle neutron scattering (SANS) and compared with F127. Two lower critical solution temperatures (LCSTs) were observed for the pentablock copolymer, corresponding to PPO and PNIPAM blocks, respectively. The adsorption of PN41 on thiol‐grafted hydrophobic gold surfaces at various temperatures was investigated using a quartz crystal microbalance. It was found that the adsorption behaviour and mechanism of PN41 were mainly determined by the interactions of the pentablock copolymers with different chain conformations in dilute aqueous solutions at various temperatures. SANS measurements were used to determine the temperature‐dependent structural evolution of polymer micelles in aqueous solution. A NOESY study revealed that above the LSCT of PNIPAM, the interaction of PPO and PNIPAM protons increases and the distance between PPO and PNIPAM decreases. © 2019 Society of Chemical Industry

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call