Abstract

The carbon nanotubes/TiO2 (CNTs/TiO2) composite photocatalysts composed of TiO2 nanoparticles and multiwalled carbon nanotubes (CNTs) were prepared by a facile hydrothermal method. The photocatalysts were characterized by a range of analytical techniques including X-ray powder diffraction, field emission scanning electron microscope, thermal gravimetric analysis and UV–Vis optical absorption spectra, etc. The amount of TiO2 nanoparticles growing on CNTs could be tuned by adjusting the dosage of precursor in the reaction solution. Both the adsorptivity and photocatalytic activities of pure CNTs, pure TiO2, and the CNTs/TiO2 nanocomposites were tested by the removal of methylene blue from water in dark and under a simulated sunlight, respectively. By comparison, the improved photocatalytic activity of the CNTs/TiO2 nanocomposite is mainly due to that the CNTs can disperse the active component of TiO2 nanoparticles, provide a larger the specific surface area, as well as act as an electron sink to accelerate the separation of the photogenerated charges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.