Abstract

A graphene-like magnetic biochar (GLMB) was synthesized using lotus seedpod and potassium ferrate with simple step and applied for E2 adsorption. GLMB was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS), Raman, X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and BET surface area. Several common (solution pH, ionic strength, humic acid and foreign ions) and new (Al2O3 nanoparticles and microplastics (MPs)) water experiment conditions were investigated. Characterization results demonstrated that the sample was fabricated successfully and it possessed some graphene-like properties and a large surface area (828.37m2/g). Adsorption results revealed that the pseudo-second-order kinetics and Langmuir isotherm models could provide a better description for E2 uptake behavior. The E2 adsorption capacity could be influenced by solution pH, ionic strength and SO42- ions, and the effect of humic acid and background electrolyte (Na+, K+, Ca2+, Mg2+, Cl-, NO3-, PO43-) could be neglected. The presences of Al2O3/MPs significantly decreased the time to reach adsorption equilibrium for E2 adsorption on GLMB, but had no obvious improvement or inhibiting effects on E2 removal when the adsorption reached equilibrium. The adsorption mechanism for E2 adsorption on GLMB was multiple, which involving π-π interactions, micropore filling effects, electrostatic interaction. The regeneration experiments showed that GLMB possessed a good regeneration performance. Based on the experimental results and comparative analysis with other adsorbents, GLMB was an economical, high-efficiency, green and recyclable adsorbent for E2 removal from aqueous solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.