Abstract

The solid-state structures of the complexes M[PhB(μ-N-t-Bu)2]2 (1a, M= Ge; 1b, M = Sn) were determined to be spirocyclic with two orthogonal boraamidinate (bam) ligands N,N′-chelated to the group 14 centre. Oxidation of 1b with SO2Cl2 afforded the thermally unstable, blue radical cation {Sn[PhB(μ-N-t-Bu)2]2}•+, identified by electron paramagnetic resonance (EPR) spectroscopy supported by density functional theory (DFT) calculations, whereas the germanium analogue 1a was inert towards SO2Cl2. The reaction between Li2[PhB(μ-N-t-Bu)2]2 and SnCl2 or PbI2 in 2:1 molar ratio in diethyl ether produced the novel heterotrimetallic complexes Li2Sn[PhB(μ-N-t-Bu)2]2 (2b) and (Et2O·Li)LiPb[PhB(μ-N-t-Bu)2]2 (2c·OEt2), respectively. By contrast, treatment of Li2[PhB(μ-N-t-Bu)2]2 with C4H8O2·GeCl2 yielded the germanium(IV) complex 1a via a redox process. The X-ray structures of 2b and 2c·THF revealed polycyclic arrangements in which one bam ligand is N,N′-chelated to the Sn(II) or Pb(II) atom and one of the Li+ cations, while the second bam ligand exhibits a unique bonding mode, bridging all three metal centres. The fluctional behaviour of 2b was investigated by variable temperature, multinuclear NMR spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.