Abstract

Attempts to prepare heterobimetallic complexes in which 3d and uranium magnetic ions are associated by means of the Schiff bases H(2)L(i) derived from 2-hydroxybenzaldehyde or 2-hydroxy-3-methoxybenzaldehyde were unsuccessful because of ligand transfer reactions between [ML(i)] (M=Co, Ni, Cu) and UCl(4) that led to the mononuclear Schiff base complexes of uranium [UL(i)Cl(2)]. The crystal structure of [UL(3)Cl(2)(py)(2)] [L(3)=N,N'-bis(3-methoxysalicylidene)-ethylenediamine; py=pyridine] was determined. The hexadentate Schiff base ligand N,N'-bis(3-hydroxysalicylidene)-2,2-dimethyl-1,3-propanediamine (L) was useful for the synthesis of novel trinuclear complexes of the general formula [[ML(py)](2)U] (M=Co, Ni, Zn) or [[CuL(py)]M'[CuL]] (M'=U, Th, Zr) by reaction of [M(H(2)L)] with [M'(acac)(4)] (acac=MeCOCHCOMe). The crystal structures of the Co(2)U, Ni(2)U, Zn(2)U, Cu(2)U, and Cu(2)Th complexes show that the two ML fragments are orthogonal, being linked to the central actinide ion by the two pairs of oxygen atoms of the Schiff base ligand. In each compound, the UO(8) core exhibits the same dodecahedral geometry, and the three metals are linear. The magnetic study indicated that the two Cu(2+) ions are not coupled in the Cu(2)Zr and Cu(2)Th compounds. The magnetic behavior of the Co(2)U, Ni(2)U, and Cu(2)U complexes was compared with that of the Zn(2)U derivative, in which the paramagnetic 3d ion was replaced with the diamagnetic Zn(2+) ion. A weak antiferromagnetic coupling was observed between the Ni(2+) and the U(4+) ions, while a ferromagnetic interaction was revealed between the Cu(2+) and U(4+) ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.