Abstract
The complexes [(dpdpm)Ni(2-NO3)2] (1), [(dpdpm)Ni(2-NO3)(1-NO3)(CH3CN)] (2), [(dpdpm)2Ni(1-NO3)(H2O)]NO3 (3), and [(dpdpm)2Ni(H2O)2][NO3]2 (4) (dpdpm = diphenyl(dipyrazolyl)methane, Ph2C(C3N2H3)2), have been prepared and characterized by IR and UV-vis-NIR spectroscopy and X-ray diffraction studies. X-ray studies have confirmed that complexes 1-4 all adopt variously distorted octahedral structures in the solid state, the largest distortions arising from the small bite-angle of the bidentate nitrate ligand in 1 and 2. Magnetic moment measurements indicate that these solids are paramagnetic with two unpaired electrons. The solution 1H NMR data show that the paramagnetism is maintained in solution. Absorption spectra of 1-4 show three main bands in the region of 350-1000 nm representing spin allowed (d-d) transitions from the ground state 3A2g to the excited states 3T2g, 3T1g(3F), and 3T1g(3P). A weak shoulder was also detected at about 700-800 nm in most spectra, representing spin-forbidden transitions 3A2g 1Eg. A comparison of the crystal field parameters 10Dq and B for 1-4 to the corresponding values for related complexes indicated that these parameters are fairly insensitive to structural variations within this family of complexes. The 10Dq/B ratios show greater variations, but no clear correlations are apparent between 10Dq/B and such structural features as the nature of ligator atoms (N:O ratio), the bonding mode of the nitrate ligand, or the overall charge. Complexes 1 (green) and 2 (blue) interconvert as a function of temperature (solutions and solid samples), concentration of CH3CN (solutions), or CH3CN vapor pressure (solid samples).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.