Abstract

Two novel 3D coordination polymers {[Mn(aip)(DMF)]} n , CPO-9, and {[Mn 3(Hatp) 2(atp) 2](H 2O) 2(DEF) 4} n CPO-10 (aip = 5-aminoisophthalate, atp = 2-aminoterephthalate, DMF = dimethylformamide, DEF = diethylformamide) have been synthesized by solvothermal methods. Their properties have been studied by single-crystal X-ray diffraction, thermogravimetric analysis, high-temperature powder X-ray diffraction and magnetic susceptibility measurements. The crystal structure of CPO-9 is based on infinite chains of carboxylato-bridged five-coordinated Mn(II) ions that are crosslinked via the aip ligands to form a 3D structure. CPO-10 is based on linear trinuclear building units of carboxylato-bridged octahedral Mn(II) ions that are crosslinked by the atp ligands into a 3D structure. Both compounds have 1D channels that contain solvent molecules. The solvent accessible void volume for CPO-10 is 51.9% of the unit cell volume. For both compounds, however, the solvent molecules cannot be removed without the collapse of the structures into amorphous phases at 250 °C. The magnetic susceptibility measurements indicate antiferromagnetic couplings between the Mn(II) ions in both compounds. The magnetic data have been fitted using theoretical approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call