Abstract

The SβC gene is conditionally expressed a 99-residue carboxy terminal fragment, C99, of amyloid precursor protein in MC65 cells and causes cell death. Consequently, MC65 cell line was used to identify inhibitors of toxicity related to intracellular amyloid β (Aβ) oligomers. Compounds that reduce the level of Aβ peptides, prevent Aβ aggregation, or eliminate existing Aβ aggregates may be used in the treatment of Alzheimer’s disease (AD). Previously, we found that a tricyclic pyrone (TP) molecule, compound 1, prevents MC65 cell death and inhibits Aβ aggregation. Hence various TPs containing heterocycle at C7 side chain and a nitrogen at position 2 or 5 were synthesized and their MC65 cell protective activities evaluated. TPs containing N3′-adenine moiety such as compounds 1 and 11 are most active with EC 50 values of 0.31 and 0.35 μM, respectively. EC 50 values of tricyclic N5-analog, pyranoisoquinolinone 13, and N2-analog, pyranopyridinone 20, are 2.49 and 1.25 μM, respectively, despite the lack of adenine moiety. Further investigation of tricyclic N2- and N5-analogs is warranted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call