Abstract

A series of di- and trinucleating ligands with a 1,3,5-triethylbenzene core connected to N,N-bidentate tethers was synthesized. The ligands readily reacted with monuclear Rh and Pd precursors to give the corresponding di- and trinuclear complexes, which were characterized by using NMR and ESI mass spectroscopy. In the solid state, the trinuclear complexes with ligands having pyridylpyrazolyl tethers adopt the most stable ababab configuration, in which the organometallic fragments are on the same side of the benzene plane. On the other hand, in solution, the linker moieties between the benzene core and the metals are flexible enough to interconvert between other configurations, that is, they exhibit dynamic behavior, and the rotational barrier was dependent on the length of the linkers. From variable temperature (VT) 1H NMR measurements, the rotational barrier for a trinuclear Rh-CO complex with a ligand having methylene linkers was estimated to be approximately 12.6 kcal mol(-1). However, no spectral changes were observed for the ethylene derivative in the temperature range of -60 degrees C to 50 degrees C, indicating that the rotation was not frozen out on the 1H NMR timescale, even at -60 degrees C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.