Abstract

Several porous materials such as metal–organic frameworks (MOFs) and aluminophosphates have been synthesized with microwave and conventional electric heating in various temperatures and times to investigate the quantitative acceleration in the synthesis of porous materials by microwaves. From the analysis of the acceleration under microwave heating with the Eyring equation, it can be understood that, irrespective of the type of porous materials, the acceleration by microwaves is mainly due to decreased activation free energy (ΔG⧧) even though the activation energy (Ea) and activation enthalpy (ΔH⧧) are increased. The decreased activation free energy is mainly due to the high activation entropy (ΔS⧧) of microwave synthesis compared with the entropy of conventional electric synthesis. Accelerated synthesis with microwaves may be explained with changes of relative energies of intermediates for high activation entropy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.