Abstract

Abstract The synthetic conditions of highly ordered and thermally stable mesoporous molecular sieves from a layered silicate kanemite are established. We divided the formation process of the mesoporous materials from kanemite into two elemental processes: i) exchange of Na+ in the interlayer of kanemite for alkyltrimethylammonium cations and ii) condensation of silicates and formation of a three dimensional silicate framework. Higher pH (over 11.5) at the cation-exchange process and the subsequent pH adjustment at 8.5 at the condensation process were best suited for the formation of mesoporous products with high regularity and thermal stability. Removal of partially dissolved kanemite during the cation-exchange process avoided the formation of amorphous materials as a by-product. Structures of some intermediate silicate/surfactant complexes supported the proposed folded sheets mechanism for the formation of the mesoporous molecular sieves. Syntheses by using alkyltrimethylammonium with different alkyl-chain lengths are also reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.