Abstract
Dihydroartemisinic acid (DHAA), a sesquiterpenoid natural product from Artemisia annua, converts to artemisinin, an anti-malarial natural product that contains an endoperoxide bridge. The endoperoxide moiety is responsible for the biological activity of artemisinin. Therefore, understanding the biosynthesis of this functional group could lead to the optimization of the process to produce this medicine. DHAA converts to artemisinin through the incorporation of two molecules of oxygen in a four-step process. The reaction is a spontaneous cascade process that involves (i) the initial incorporation of a molecule of oxygen through the reaction of an allylic C-H bond of DHAA, (ii) followed by the cleavage of a C-C bond, (iii) the incorporation of a second molecule of oxygen, and (iv) polycyclization to yield artemisinin. This manuscript is focused on describing the chemical syntheses of regioselectively polydeuterated DHAA isotopologues at C3 and C15, in addition to research efforts related to clarifying how the endoperoxide-forming process of artemisinin occurs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.