Abstract

Small molecular donor, DTDCTB achieved a high power conversion efficiency (PCE) value of 6.6 ± 0.2% in vacuum-deposited planar mixed heterojunction (PMHJ) structure. However, the same material just recorded PCE of 0.34% in solution processed small molecule based bulk heterjunction (BHJ) organic photovoltaic cells. For the improvement of organic photovoltaic cells (OPVs), In this study, we designed and synthesized several D-A-A (donor-acceptor-acceptor) type molecular electron donating materials. Ditolylaminothienyl moiety as an electron donating group connected to 1,2,5-benzothiadiazole as a conjugated electron accepting unit, simultaneously with an electron accepting terminal group such as cyano alkyl acetate and N-alkyl rhodanine. The thermal, photophysical, and electrochemical properties of prepared small molecules were investigated by DSC, UV/Vis spectroscopy and Cyclic Voltametry, respectively. As a result, 0.89% of PCE can be obtained from OPV using a mixture of DTATBTER and PCBM as an active layer with a Voc of 0.87 V, a Jsc of 3.20 mA/cm2, and a fill factor of 31.9%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call