Abstract

Rhodium(III) porphyrin chloride reacted with aryl aldehydes in solvent-free conditions to give acyl rhodium porphyrins. Selective aldehydic without any aromatic carbon−hydrogen bond activation (CHA) was observed. At lower temperature, reduction and side products were found. Alkanals reacted poorly. On the other hand, Rh(III) porphyrin methyl reacted more cleanly with both aryl and alkyl aldehydes. These reactions provided a facile, convenient synthesis of acyl rhodium porphyrins. These activations are unique CHA by high-valent Rh(III) species. Preliminary mechanistic experiments suggested that the rhodium(III) porphyrin chloride initially formed a cationic rhodium(III) porphyrin via chloride dissociation and then underwent oxidative addition or heterolysis to yield the product. On the other hand, rhodium(III) porphyrin methyl underwent either oxidative addition or σ bond metathesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.