Abstract

A general synthetic approach to strained p-phenylene-based acetylenic macrocycles is described. A key feature in this approach is exploitation of Dewar benzene as an angular p-phenylene synthon. Thus, 1,4-acetal-bridged 2,5-dichloro(Dewar benzene) 5, prepared in four steps from dimethyl acetylenedicarboxylate and 1,2-dichloroethylene, is applied as such a building block in the syntheses of strained macrocycles 13 and anti-20. For the synthesis of 13, m-phenylene units are used as spacers and modified Eglington-Glaser coupling is applied for the macrocyclization step. For the synthesis of anti-20, on the other hand, o-phenylene units are used as spacers and Sonogashira coupling is applied for the macrocyclization step. Macrocycles 13 and anti-20 are characterized crystallographically, and their strained nature is reflected mainly in the deviation of the acetylene units from linearity; the C&tbd1;C-C angles range from 168.7(3) degrees to 179.9(3) degrees in 13 and from 168.0(5) degrees to 171.4(4) degrees in anti-20. Macrocycle 13 shows unique conformational property, namely, the p-phenylene units arranged in parallel in the rectangular framework rotate freely about the long axes, as evidenced by the (1)H NMR studies. Macrocycle anti-20 exhibits a Stokes shift of 179 nm, which is exceptionally large for phenylacetylene macrocycles, presumably owing to the characteristic stacking structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.