Abstract

Seven new Cu(II) complexes based on a binuclear planar unit [Cu(mu-L(1))](2), [[Cu(mu-L(1))(NO(3))(H(2)O)](2) (1), [Cu(mu-L(1))(HL(1))(ClO(4))](2) (2), [Cu(4)(mu-L(1))(6)(NO(3))(2)] (3), [Cu(4)(mu-L(1))(6)(L(1))(2)] (4), [Cu(4)(mu-L(1))(6)(mu-L(2))](n) (5), [Cu(4)(mu-L(1))(6)(mu-L(3))](n) (6), [[Cu(4)(mu-L(1))(4)(mu-L(4))(2)](H(2)O)(3)](n) (7) (HL(1) = 3-(2-pyridyl)pyrazole, L(2) = 1,8-naphthalenedicarboxylate, L(3) = terephthalate, L(4) = 2,6-pyridinedicarboxylate)}, have been synthesized and characterized by elemental analysis, IR, and X-ray diffraction. In 1 and 2, the Cu(II) centers are linked by deprotonated pyrazolyl groups to form dinuclear structures. 3 and 4 have similar gridlike tetranuclear structures in which two additional deprotonated L(1) ligands bridge two [Cu(mu-L(1))](2) units perpendicularly. 5 and 6 consist of similar one-dimensional (1-D) chains in which gridlike tetranuclear copper(II) units similar to that of 3 are further linked by L(2) or L(3) ligands, respectively. And, in 7, L(4) ligands link [Cu(mu-L(1))](2) binuclear units to form a tetranuclear gridlike structure in chelating/bridging mode and simultaneously bridge the tetranuclear units to form a 1-D chain. The magnetic properties of all complexes were studied by variable-temperature magnetic susceptibility and magnetization measurements. The obtained parameters of J range from -33.1 to -211 cm(-1), indicating very strong antiferromagnetic coupling between Cu(II) ions. The main factor that affects the |J| parameter is the geometry of the Cu(N(2))(2)Cu entity. From the magnetic point of view, 1 and 2 feature "pure" dinuclear, 3 and 5 tetranuclear, and 4, 6, and 7 pseudodinuclear moieties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call