Abstract
AbstractSubstituted 2‐aminoindenes have been synthesized in almost quantitative yields by reactions of amines such as methylpiperazine, trimethylethylenediamine, 1,4‐diaza‐cycloheptane and N,N′‐dimethylethylenediamine with 2‐indanone. The 2‐aminoindenes can be deprotonated and reacted with BrMn(CO)3(Py)2 to produce the respective aminoindenyl‐cymantrenes in yields between 55–70%. The X‐ray crystal structures of 2‐(methylpiperazine)indenyl‐cymantrene 5 (P1, a = 12.667(3) Å, b = 16.630(3) Å, c = 17.382(3) Å, α = 72.70(3)°, β = 74.59(3)°, γ = 88.66(3)°, V = 3364.1(12) Å 3, Z = 8, R1(2σ(I)) = 4.02%, wR2(2σ(I)) = 10.30%) and the HClO4 adduct of 2‐(trimethylethylenediamine)‐indenyl‐cymantrene 6 (Cc, a = 23.722(5) Å, b = 6.9080 Å, c = 13.264 Å, β = 111.77(3)°, V = 2018.6(7) Å 3, Z = 4, R1(2σ(I)) = 2.94%, wR2(2σ(I)) = 7.90%) were determined. In both complexes the indenyl‐carbon bonded to nitrogen displays significantly longer bonds to manganese [223.5(3)–225.8(3) pm] than the other four carbon atoms [213.3(3)–219.1(3) pm]. The short indenyl‐nitrogen bonds of 136.2(4) and 137.8(4) pm are indicative of a substantial multiple bond character. The complexation of Zn2+ by the nitrogen atoms of 6 results in significant shifts of the CO stretching frequencies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Zeitschrift für anorganische und allgemeine Chemie
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.