Abstract

Semirigid organic ligands can adopt different conformations to construct coordination polymers with more diverse structures when compared to those constructed from rigid ligands. A new asymmetric semirigid organic ligand, 4-{2-[(pyridin-3-yl)methyl]-2H-tetrazol-5-yl}pyridine (L), has been prepared and used to synthesize three bimetallic macrocyclic complexes and one coordination polymer, namely, bis(μ-4-{2-[(pyridin-3-yl)methyl]-2H-tetrazol-5-yl}pyridine)bis[dichloridozinc(II)] dichloromethane disolvate, [Zn2Cl4(C12H10N6)2]·2CH2Cl2, (I), the analogous chloroform monosolvate, [Zn2Cl4(C12H10N6)2]·CHCl3, (II), bis(μ-4-{2-[(pyridin-3-yl)methyl]-2H-tetrazol-5-yl}pyridine)bis[diiodidozinc(II)] dichloromethane disolvate, [Zn2I4(C12H10N6)2]·2CH2Cl2, (III), and catena-poly[[[diiodidozinc(II)]-μ-4-{2-[(pyridin-3-yl)methyl]-2H-tetrazol-5-yl}pyridine] chloroform monosolvate], {[ZnI2(C12H10N6)]·CHCl3}n, (IV), by solution reaction with ZnX2 (X = Cl and I) in a CH2Cl2/CH3OH or CHCl3/CH3OH mixed solvent system at room temperature. Complex (I) is isomorphic with complex (III) and has a bimetallic ring possessing similar coordination environments for both of the ZnII cations. Although complex (II) also contains a bimetallic ring, the two ZnII cations have different coordination environments. Under the influence of the I- anion and guest CHCl3 molecule, complex (IV) displays a significantly different structure with respect to complexes (I)-(III). C-H...Cl and C-H...N hydrogen bonds, and π-π stacking or C-Cl...π interactions exist in complexes (I)-(IV), and these weak interactions play an important role in the three-dimensional structures of (I)-(IV) in the solid state. In addition, the fluorescence properties of L and complexes (I)-(IV) were investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call