Abstract

Novel conjugated copolymers consisting of bis(2-octyldodecyloxy)benzo[1,2-b:3,4-b]dithiophene (BDT) and N-alkyl-2,2′-bithiophene-3,3′-dicarboximide (BTI) with thiophene and bithiophene linkages have been synthesized and evaluated in bulk heterojunction solar cell. BDT, BTI and thiophene (or bithiophene) units were incorporated using Stille polymerization to generate poly(5-dodecyl-3-(2-thienyl)-4H-dithieno[3,2-c:2,3-e]azepine-4,6(5H)-dione-co-4,8-di(2-octyldodecyloxy)benzo[1,2-b;3,4-b]dithiophene) (P1, P2 and P3) and poly(5-dodecyl-3-di(thien-2-yl)-4H-dithieno[3,2-c:2,3-e]azepine-4,6(5H)-dione-co-4,8-di(2-octyldodecyloxy)benzo[1,2-b:3,4-b]dithiophene) (P4, P5 and P6). The BTI unit, as the electron deficient moeity, and the BDT–thiophene (or bithiophene) unit, as the electron rich moeity, have been applied for the efficient intramolecular charge transfer. The introduction of thiophene or bithiophene unit improved power conversion efficiency (PCE) of the OPVs. The best device with P2:PC61BM (1:1) showed a open circuit voltage (VOC) of 0.88 V, a short circuit current (JSC) of 7.36 mA/cm2, and fill factor (FF) of 0.63, which yield PCE of 4.17%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.