Abstract

Sodium 4′-methoxy-5,6,7-trihydroxyisoflavone-3′-sulfonate (1) is synthesized by the sulfonation of 6-hydroxybiochanin A and its structure is characterized by elemental analysis, 1H-NMR, and IR spectroscopy. It is assembled with cobalt(II) or zinc(II), hexaquacobalt(II) bis(4′-methoxy-5,6,7-trihydroxyisoflavone-3′-sulfonate) tetrahydrate (2) and hexaquazinc(II) bis(4′-methoxy-5,6,7-trihydroxyisoflavone-3′-sulfonate) tetrahydrate (3) are obtained and characterized by IR spectroscopy. Simultaneously, their three-dimensional structures are determined by single-crystal X-ray analysis. It turns out that 2 and 3 are isomorphous and crystallize in the triclinic crystal system, space group P-1. Hydrophilic regions are defined by O–H···O hydrogen bonds involving the coordinated water molecules, the included water molecules, and sulfonate groups. Aromatic π...π stacking interactions assemble the isoflavone skeletons into columns and these columns formed hydrophobic regions. The sulfonate group is an important bridge as a structural link between the hydrophilic regions and the hydrophobic regions. Hydrogen bonds, π...π stacking interactions and the electrostatic interactions assemble 2 and 3 into three-dimensional network structures. Sodium 4′-methoxy-5,6,7-trihydroxyisoflavone-3′-sulfonate (1) is synthesized and assembled with cobalt(II) or zinc(II). Hexaquacobalt(II) bis(4′-methoxy-5,6,7-trihydroxyisoflavone-3′-sulfonate) tetrahydrate (2) and hexaquazinc(II) bis(4′-methoxy-5,6,7-trihydroxyisoflavone-3′-sulfonate) tetrahydrate (3) are obtained and determined by single-crystal X-ray analysis. It turns out that 2 and 3 are isomorphous and assembled into three-dimensional network structures, characterized by hydrophilic regions defined by hydrogen bonds involving the coordinated water molecules, the included water molecules, and the sulfonate groups and by hydrophobic columns, formed by the isoflavone skeletons, interacting through π...π stacking interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.