Abstract

The new poly(ester-etherurethane)s (PEEUR) were prepared in two stage syntheses from formerly obtained oligo(alkylene ester-ether)diols (OAEE) and 4,4'-diphenylmethane diisocyanate (MDI). PEEUR samples were subjected to crosslinking with styrene in the presence of radical polymerization initiators: methyl ethyl ketone peroxide (MEKPO) or cobalt 2-ethyl cyclohexanoate (EtHCo) (Table 1). Crosslinked PEEUR were characterized by their mechanical strength properties, dynamic mechanical thermal analysis (DMTA), thermogravimetric analysis (TG) (Table 2) and transmission electron microscopy (TEM) (Fig. 2). The structures were confirmed by FT-IR method (Fig. 1). Tensile strength of poly(ester-etherurethane)s prepared was in the range 8-29MPa, hardness: 24.9-28.3°Sh D, thermal stability (expressed as temperature of 10% weight loss) in the range 298-333°C and glass transition temperature was 50-76°C. Microscopic observations showed that the materials obtained were homogeneous in micrometric scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.