Abstract

BackgroundCucumber, Cucumis sativus L. (2n = 2 × = 14) and melon, C. melo L. (2n = 2 × = 24) are two important vegetable species in the genus Cucumis (family Cucurbitaceae). Both species have an Asian origin that diverged approximately nine million years ago. Cucumber is believed to have evolved from melon through chromosome fusion, but the details of this process are largely unknown. In this study, comparative genetic mapping between cucumber and melon was conducted to examine syntenic relationships of their chromosomes.ResultsUsing two melon mapping populations, 154 and 127 cucumber SSR markers were added onto previously reported F2- and RIL-based genetic maps, respectively. A consensus melon linkage map was developed through map integration, which contained 401 co-dominant markers in 12 linkage groups including 199 markers derived from the cucumber genome. Syntenic relationships between melon and cucumber chromosomes were inferred based on associations between markers on the consensus melon map and cucumber draft genome scaffolds. It was determined that cucumber Chromosome 7 was syntenic to melon Chromosome I. Cucumber Chromosomes 2 and 6 each contained genomic regions that were syntenic with melon chromosomes III+V+XI and III+VIII+XI, respectively. Likewise, cucumber Chromosomes 1, 3, 4, and 5 each was syntenic with genomic regions of two melon chromosomes previously designated as II+XII, IV+VI, VII+VIII, and IX+X, respectively. However, the marker orders in several syntenic blocks on these consensus linkage maps were not co-linear suggesting that more complicated structural changes beyond simple chromosome fusion events have occurred during the evolution of cucumber.ConclusionsComparative mapping conducted herein supported the hypothesis that cucumber chromosomes may be the result of chromosome fusion from a 24-chromosome progenitor species. Except for a possible inversion, cucumber Chromosome 7 has largely remained intact in the past nine million years since its divergence from melon. Meanwhile, many structural changes may have occurred during the evolution of the remaining six cucumber chromosomes. Further characterization of the genomic nature of Cucumis species closely related to cucumber and melon might provide a better understanding of the evolutionary history leading to modern cucumber.

Highlights

  • Cucumber, Cucumis sativus L. (2n = 2 × = 14) and melon, C. melo L. (2n = 2 × = 24) are two important vegetable species in the genus Cucumis

  • Development of an F2-based extended melon linkage map using cucumber simple sequence repeats (SSR) In total, 2,487 SSR markers were used to screen for polymorphisms between the two parental lines, Q3-2-2 and Top Mark of the F2 mapping population

  • We provide additional information regarding the syntenic relationships between cucumber and melon chromosomes indicating that the evolutionary dynamics of cucumber evolution is complex (Table 2, Figure 3)

Read more

Summary

Introduction

(2n = 2 × = 24) are two important vegetable species in the genus Cucumis (family Cucurbitaceae). The genus Cucumis (family Cucurbitaceae) includes two economically important vegetable crop species that are cultivated worldwide: cucumber (C. sativus L., 2n = 2 × = 14) and melon (C. melo L., 2n = 2 × = 24). While the subgenus Melo is centered in Africa with 30 species including melon (all of which have 2n = 24 chromosomes), the subgenus Cucumis is of Asian origin and includes the cultivated cucumber C. sativus and its wild relative C. hystrix Char. Hardwickii (Royle) Alef., comprise the primary gene pool of cucumber This gene pool has a rather narrow genetic base as evidenced in various genetic diversity studies [3,4,5,6]. No interspecific hybrids between melon and cucumber have been reported due to their sexual incompatibility [7]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call