Abstract
Abstract Large neural language models are steadily contributing state-of-the-art performance to question answering and other natural language and information processing tasks. These models are expensive to train. We propose to evaluate whether such pre-trained models can benefit from the addition of explicit linguistics information without requiring retraining from scratch.We present a linguistics-informed question answering approach that extends and fine-tunes a pre-trained transformer-based neural language model with symbolic knowledge encoded with a heterogeneous graph transformer. We illustrate the approach by the addition of syntactic information in the form of dependency and constituency graphic structures connecting tokens and virtual vertices.A comparative empirical performance evaluation with BERT as its baseline and with Stanford Question Answering Dataset demonstrates the competitiveness of the proposed approach. We argue, in conclusion and in the light of further results of preliminary experiments, that the approach is extensible to further linguistics information including semantics and pragmatics.KeywordsQuestion answeringTransformerGraph neural network
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.