Abstract

Previous studies have shown that syntaxin 17 (STX17) is involved in mediating the fusion of autophagosomes and lysosomes. This study aimed to investigate the role and mechanism of STX17 in neuronal injury following cerebral ischemia/reperfusion. The ischemia/reperfusion (I/R) models were established by transient middle cerebral artery occlusion (tMCAO) in mice and oxygen glucose deprivation/reperfusion (O/R) in primary cultured cortical neurons and HT22 cells. Cerebral ischemia/reperfusion significantly up-regulated the expression of STX17 in neurons. Lentivirus mediated knockdown of STX17 in neurons reduced neuronal viability and increased LDH leakage. Injection of AAV9-shSTX17 into the brain of mice then subjected to tMCAO also significantly augmented the infarct area and exacerbated neurobehavioral deficits and mortality. Depletion of STX17 caused accumulation of autophagic marker/substrate LC3 II and p62, blockade of the autophagic flux, and the accumulation of dysfunctional lysosomes. Knockdown of STX17 also aggravated endoplasmic reticulum (ER) stress-dependent neuronal apoptosis induced by ischemia/reperfusion. Importantly, induction of autophagy-lysosomal pathway and alleviation of ER stress partially rescued STX17 knockdown-induced neuronal damage. These results suggest that STX17 may ameliorate ischemia/reperfusion-induced neuronal damage by enhancing autophagy flux and reducing ER stress-dependent neuronal apoptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.