Abstract
We solve an open problem concerning syntactic complexity: We prove that the cardinality of the syntactic semigroup of a suffix-free language with n left quotients (that is, with state complexity n) is at most (n−1)n−2+n−2 for n⩾6. Since this bound is known to be reachable, this settles the problem. We also reduce the alphabet of the witness languages reaching this bound to five letters instead of n+2, and show that it cannot be any smaller. Finally, we prove that the transition semigroup of a minimal deterministic automaton accepting a witness language is unique for each n.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.