Abstract
The aim of this study is to look at the the syntactic calculus of Bar-Hillel and Lambek, including semantic interpretation, from the point of view of constructive type theory. The syntactic calculus is given a formalization that makes it possible to implement it in a type-theoretical proof editor. Such an implementation combines formal syntax and formal semantics, and makes the type-theoretical tools of automatic and interactive reasoning available in grammar. In the formalization, the use of the dependent types of constructive type theory is essential. Dependent types are already needed in the semantics of ordinary Lambek calculus. But they also suggest some natural extensions of the calculus, which are applied to the treatment of morphosyntactic dependencies and to an analysis of selectional restrictions. Finally, directed dependent function types are introduced, corresponding to the Π types of constructive type theory. Two alternative formalizations are given: one using syntax trees, like Montague grammar, and one dispensing with them, like the theory called minimalistic by Morrill. The syntax tree approach is presented as the main alternative, because it makes it possible to embed the calculus in a more extensive Montague-style grammar.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.