Abstract

Our previous study revealed that synovial mesenchymal stem cell (SMSC)-derived exosomal microRNA-302c enhanced chondrogenesis by targeting a disintegrin and metalloproteinase 19 (ADAM19) in vitro. This study aimed to validate the potential of SMSC-derived exosomal microRNA-302c for the treatment of osteoarthritis in vivo. After 4weeks of destabilization of the medial meniscus surgery (DMM) to establish an osteoarthritis model, the rats received weekly articular cavity injection of SMSCs with or without GW4869 treatment (exosome inhibitor) or exosomes from SMSCs with or without microRNA-320c overexpression for another 4weeks. SMSCs and SMSC-derived exosomes reduced the Osteoarthritis Research Society International (OARSI) score, improved cartilage damage repair, suppressed cartilage inflammation, suppressed extracellular matrix (ECM) degradation, and inhibited chondrocyte apoptosis in DMM rats. However, these effects were largely hampered in rats that were injected with GW4869-treated SMSCs. Moreover, exosomes from microRNA-320c-overexpressing SMSCs exerted a better effect than exosomes from negative control SMSCs on decreasing the OARSI score, enhancing cartilage damage repair, suppressing cartilage inflammation, and inhibiting ECM degradation and chondrocyte apoptosis. Mechanistically, exosomes from microRNA-320c-overexpressing SMSCs reduced the levels of ADAM19, as well as β-catenin and MYC, which are two critical proteins in Wnt signalling. SMSC-derived exosomal microRNA-320c suppresses ECM degradation and chondrocyte apoptosis to facilitate cartilage damage repair in osteoarthritis rats by targeting ADAM19-dependent Wnt signalling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.