Abstract

In this study, an automated synoptic weather typing was employed to identity the weather types most likely associated with daily typhoon/typhoon-related heavy rainfall events for Chiayi, Taiwan. The synoptic weather typing was developed using principal components analysis, an average linkage clustering procedure, and discriminant function analysis. The classification results showed that the synoptic weather typing was successful at identifying typhoon-related weather types. Five synoptic weather types (Weather Types 1–5) were identified over the past 11-year period as the primary typhoon-related weather types. These five typhoon-related weather types can capture 34 out of 36 total typhoon-related heavy rainfall days (>50 mm/d) and all nine cases with typhoon-related daily rainfall >200 mm during the period March 1998–December 2008. This result suggests that synoptic weather typing can be useful to identify historical typhoon/typhoon-related heavy rainfall events. Moreover, the method has potential to assess climate change impacts on the frequency/intensity of future typhoon/typhoon-related heavy rainfall events using future downscaled GCM climate data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.