Abstract

Abstract Synoptic classifications over the Southern Ocean in the Ross Sea region of Antarctica (50°S–Antarctic coast, 150°E–90°W) have been derived from NCEP reanalysis data (1979–2011), producing a set of six synoptic types for the region. These types describe realistic synoptic conditions for the region and represent the moisture-bearing low pressure systems that circulate around Antarctica. The types are described as follows: low Bellingshausen/Amundsen (L-BA), low (L), zonal (Z), low Ross (L-R), ridge (R), and low Amundsen (L-A). Seasonal frequencies of the synoptic types reflect the seasonal zonal shift of the Amundsen Sea low (ASL) and also correlate well with the Southern Oscillation index (SOI) and the southern annular mode (SAM). Variability in the occurrences of the synoptic types L-R and L-BA indicate a shifting of the position of the ASL farther east (west) toward (away from) the Antarctic Peninsula during La Niña (El Niño) and positive (negative) SAM conditions. A joint linear regression of the SOI and SAM indices show the strongest correlations with the types L-BA and L-R in the spring and quantifies the joint forcing effect of these climate cycles on synoptic variability in the region. As a demonstration of how synoptic classification provides links between large-scale atmospheric circulation and local climate parameters, the synoptic types are related to precipitation and temperature at Roosevelt Island, an ice core site on the Ross Ice Shelf (80°S, 160°W). The synoptic types provide quantification of distinct precipitation and temperature regimes at this site, which allows for more fundamental understanding of the precipitation source regions and transport pathways that drive the variability in snow and ice proxies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.