Abstract

Future climate change is expected to increase the risk and severity of wildland fires in tropical regions. Synoptic-scale fire weather conditions in Mexico were carefully analyzed using 20 years of satellite hotspot and rainfall data, hourly weather data, and various climate data. Fire analysis results showed that eighty-four percent of all fires in Mexico occurred south of 22° N. Southwest Mexico (SWM, N < 22°, 94–106° W) and Southeast Mexico (SEM, N < 22°, 86–94° W), account for 50% and 34% of all fires in Mexico. Synoptic-scale analysis results using hourly data showed that westerly wind sea breezes from the Pacific Ocean blow toward the coastal land areas of the SWM while easterly wind sea breezes from the Caribbean blow into the SEM. The most sensitive weather parameters were “relative humidity” for the SWM and “temperature” for the SEM. The fire-related indices selected were “precipitable water vapor anomaly” for the SWM and “temperature anomaly” for the SEM. The SWM fire index suggests that future fires will depend on dryness, while the SEM fire index suggests that future fires will depend on temperature trends. I do hope that this paper will improve local fire forecasts and help analyze future fire trends under global warming in Mexico.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call