Abstract
<p>Wildfires cause substantial losses to socio-economic and natural assets, especially in Mediterranean-climate regions. Despite human activity is the main cause of wildfires in Mediterranean European countries, lightning-ignited wildfires should be also considered a major disruptive agent as they can trigger large fires. Besides, recent studies on the potential climate change effects on wildfires pointed out that lightning-ignited wildfires may gain relevance in Mediterranean areas in the years to come.</p><p>In this regard, the present study analyses the meteorological conditions favouring lightning-ignited wildfires in Catalonia (NE Iberian Peninsula). Gaining insight into circulation types favouring thunderstorms that ignite wildfires can be useful in the forest protection tactical decision-making process, i.e. locating ignitions and potential holdover fires, preparing for days with multiple ignitions or routing detection flight paths.</p><p>It is worth noticing that one of the reasons why lightning-caused wildfires are difficult to manage is that they can survive for several days before flaring up. That is, even if forest fuels remain damp after the thunderstorm’ rainfall, lightning ignitions may survive smouldering underneath, emerging days later as surface vegetation becomes dry enough to support sustained combustion.</p><p>For this reason, on a first step, a reliable lightning-wildfire association is needed to properly identify the date and time of the firestarter for each wildfire. Afterwards, the circulation types on the days of ignition are analysed.</p><p>The study relies on a dataset of more than 750 lightning-ignited wildfires, gathered by the Forest Protection Agency of the autonomous government of Catalonia between 2005 and 2018. Lightning data comes from the Lightning Location System operated by the Meteorological Service of Catalonia.</p>
Highlights
OSA1.3 : Meteorological observations from GNSS and other space-based geodetic observing techniques OSA1.7: The Weather Research and Forecasting Model (WRF): development, research and applications
OSA3.5: MEDiterranean Services Chain based On climate PrEdictions (MEDSCOPE)
UP2.1 : Cities and urban areas in the earth- OSA3.1: Climate monitoring: data rescue, atmosphere system management, quality and homogenization 14:00-15:30
Summary
OSA1.3 : Meteorological observations from GNSS and other space-based geodetic observing techniques OSA1.7: The Weather Research and Forecasting Model (WRF): development, research and applications. EMS Annual Meeting Virtual | 3 - 10 September 2021 Strategic Lecture on Europe and droughts: Hydrometeorological processes, forecasting and preparedness Serving society – furthering science – developing applications: Meet our awardees ES2.1 - continued until 11:45 from 11:45: ES2.3: Communication of science ES2.2: Dealing with Uncertainties
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.