Abstract

Abstract An investigation of lake effect (LE) and the associated synoptic environment is presented for days when all five lakes in the Great Lakes (GL) region had LE bands [five-lake days (5LDs)]. The study utilized an expanded database of observed LE clouds over the GL during 25 cold seasons (October–March) from 1997/98 to 2021/22. LE bands occurred on 2870 days (64% of all cold-season days). Nearly a third of all LE bands occurred during 5LDs, although 5LDs consisted of just 17.1% of LE days. A majority of 5LDs (56.5%) had lake-to-lake (L2L) bands, and these days comprised 43.5% of all L2L occurrences. 5LDs occurred with a mean of 26.1 (SD = 6.2) days per cold season until 2008/09 and then decreased to a mean of 13.8 (SD = 5.5) days during subsequent cold seasons. January and February had the largest number of consecutive LE days in the GL with a mean of 5.7 and 5.4 days, respectively. As the number of consecutive LE days increases, both the number of 5LDs and the occurrence of consecutive 5LD increase. This translates to an increased potential of heavy snowfall impacts in multiple, localized areas of the GL for extended time periods. The mean composite synoptic pattern of 5LDs exhibited characteristics consistent with lake-aggregate disturbances and showed similarity to synoptic patterns favorable for LE over one or two of the GL found by previous studies. The results demonstrate that several additional areas of the GL are often experiencing LE bands when a localized area has active LE bands occurring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.