Abstract

The coupling of synoptic scale weather conditions with local scale weather and fuel conditions was examined for 2551 fires and 1 537 624 lightning strikes for the May through August fire seasons in 1988, 1989, 1992, and 1993 in Alberta and Saskatchewan. The probability of lightning fire occurrence (number of fires/number of strikes) is near zero until the Fine Fuel Moisture Code reaches 87 (moisture content of 14% dry weight), after which the probability increases rapidly. Duff Moisture and Drought Codes show less clear increases. In all cases, the probability of fire occurrence was low (the number of strikes greatly exceeded the number of forest fires), suggesting that lightning fire ignition coupled with early spread to detection was an uncommon event. This low probability of fire occurrence even at low fuel moisture may be a result of the arrangement and continuity of fuels in the boreal and subalpine forests. The literature suggests a higher probability of lightning-ignited fires in qualitatively different fuels, e.g., grasslands. The higher probability of fire at lower fuel moistures occurred primarily when high pressure dominated (positive 50-kPa anomaly) for at least 3 days and less than 1.5 mm precipitation occurred. The highest number of lightning strikes and largest number of fires also occurred when high pressure dominated. The high lightning numbers during high pressure systems were logistically related to increasing atmospheric instability (K-index).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call