Abstract

AbstractWhile the evidence for anthropogenic climate change continues to strengthen, and concerns about severe weather events are increasing, global projections of regional climate change are still uncertain due to model‐dependent changes in large‐scale atmospheric circulation, including over North Atlantic and Europe. Here, the Jenkinson–Collison classification of daily circulation patterns is used to evaluate past and future changes in their seasonal frequencies over Central Europe for the 1900–2100 period. Three reanalyses and eight global climate models from the Coupled Model Intercomparison Project phase 6, were used based on daily mean sea‐level pressure data. Best agreement in deriving relative frequencies of the synoptic types was found between the reanalyses. Global models can generally capture the interannual variability of circulation patterns and their climatological state, especially for the less frequent synoptic types. Based on historical data and the shared socioeconomic pathway 5 scenario, the evaluated trends show more robust signals during summer, given their lesser internal variability. Increasing frequencies were found for circulation types characterized by weak pressure gradients, mainly at the expense of decreasing frequencies of westerlies. Our findings indicate that given a high‐emission scenario, these signals will likely emerge from past climate variability towards the mid‐21st century for most altered circulation patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.