Abstract

Meteorological conditions associated with more than 150 intense convective precipitation events have been examined. These heavy rainfalls caused flash floods and affected most geographic regions of the conterminous United States. Heavy rains associated with weather systems of tropical origin were not considered. Analyses of surface and standard level upper-air data were undertaken to identify and define important synoptic and mesoscale mechanisms that act to intensify and focus precipitation events over specific regions. These analyses indicated that three basic meteorological patterns were associated with flash flooding in the central and eastern United States. Heavy convective precipitation episodes that occurred in the West were considered as a separate category event. Climatological characteristics, composite analyses, and upper-air data are presented for these four classifications of events. The large variability of associated meteorological patterns and parameters (especially winds aloft) makes identification of necessary conditions for flash flood-producing rainfall quite difficult; however, a number of features were common to many of the events. An advancing middle-level, short-wave trough often helped to trigger and focus thunderstorm activity. The storm areas were often located very near the mid-tropospheric, large-scale ridge position and occurred within normally benign surface pressure patterns. Many of the intense rainfalls occurred during nighttime hours. These elusive characteristics further complicate a difficult forecast problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call