Abstract
Codon usage data of bacteriophage T4 genes were compiled and synonymous codon preferences were investigated in comparison with tRNA availabilities in an infected cell. Since the genome of T4 is highly AT rich and its codon usage pattern is significantly different from that of its host Escherichia coli, certain codons of T4 genes need to be translated by appropriate host transfer RNAs present in minor amounts. To avoid this predicament, T4 phage seems to direct the synthesis of its own tRNA molecules and these phage tRNAs are suggested to supplement the host tRNA population with isoacceptors that are normally present in minor amounts. A positive correlation was found in that the frequency of E. coli optimal codons in T4 genes increases as the number of protein monomers per phage particle increases. A negative correlation was also found between the number of protein monomers per phage and the frequency of "T4 optimal codons", which are defined as those codons that are efficiently recognized by T4 tRNAs. From these observations it was proposed that tRNAs from the host are predominantly used for translation of highly expressed T4 genes while tRNAs from T4 tend to be used for translation of weakly expressed T4 genes. This distinctive tRNA-usage in T4 may be an optimization of translational efficiency, and an adjustment of T4-encoded tRNAs to the synonymous codon preferences, which are largely influenced by the high genomic AT-content, would have occurred during evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.