Abstract

Rodent HCC rat models provide advantages for interventional oncology (IO) based immunotherapy research compared to other established larger animal models or mice models. Rapid and predictable tumor growth and affordable costs permit the formation of a compelling preclinical model investigating novel IO catheter-directed therapies and local ablation therapies. Among orthotopic HCC models, the N1-S1 orthotopic HCC model has been involved in many research cases. Suboptimal tumor induction rates and potential spontaneous regression during tumor implantation procedures discouraged the use of the N1-S1 HCC model in IO-based immunotherapies. Here, N1-S1 HCC models were generated with a subcapsular implantation of two different number of N1-S1 cells using a mini-laporatomy. Tumor growth assay and immunological profiles which can preclinically evaluate the therapeutic efficacy of IO-based immunotherapy, were characterized. Finally, an N1-S1 HCC rat model generated with the proposed procedure demonstrated a representative immune suppressive HCC tumor environment without self-tumor regression. The optimized syngeneic N1-S1 HCC rat models represent an essential tool for pre-clinical evaluation of new IO immunotherapies for the treatment of HCC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.