Abstract

Syngas production via dry reforming of methane was conducted over 5 wt%Ni + xWO3/γ-Al2O3 (x = 1, 3, 5, 7, or 9 wt%) catalysts at 700 °C and ambient pressure for 7.5 h in a tubular fixed-bed reactor. Textural, morphological, and catalytic properties were investigated in relation to the weight percent of tungsten trioxide loading. The physicochemical properties of the catalysts were evaluated using XRD, N2-physisorption, TGA, H2-TPR, CO2-TPD, NH3-TPD, SEM, EDX, and Raman techniques. N2-physisorption analysis showed that tungsten trioxide promoter had a minor impact on the textural properties upon varying its weight percentage loading. With increasing tungsten trioxide loading, the total amount of reducible NiO-interacting species was increased over the catalyst surface. 5Ni+5WO3/γ-Al2O3 catalyst showed stable 79% CH4 conversions and 83% CO2 conversion with the lowest carbon deposition due to the presence of stable metallic Ni species (derived from reducible NiAl2O4 and NiWOAl), the highly acidic sites, and moderate basic sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.