Abstract

The dry and oxidative dry reforming of CH4 over alumina-supported Co–Ni catalysts were investigated over 72-h longevity experiments. The deactivation behaviour at low CO2:CH4 ratio (≤2) suggests that carbon deposition proceeds via a rapid dehydropolymerisation step resulting in the blockage of active sites and loss in CO2 consumption. In particular, at high temperatures of 923 K and 973 K, a ‘breakthrough’ point was observed in which deactivation that was previously slow suddenly accelerated, indicating rapid polymerisation of deposited carbon. Only with feed CO2:CH4 > 2 or with O2 co-feeding was coke-induced deactivation eliminated. In particular, O2 co-feeding gave improved carbon removal, product H2:CO ratios more suitable for downstream GTL processing and stable catalytic performance. Conversion-time data were adequately fitted to the generalised Levenspiel reaction-deactivation model. Activation energy estimate (66–129 kJ mol−1) was dependent on the CO2:CH4 ratio but representative of other hydrocarbon reforming reactions on Ni-based catalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.