Abstract

Highly sinter-stable 10 wt% Ni–xLa/MgAl2O4 (x = 0–5 wt%) catalysts were prepared by co-impregnation for the combined steam and CO2 reforming (CSCR) of coke oven gas (COG). The physicochemical properties of the catalysts were analyzed by BET, XRD, H2 chemisorption, and H2-TPR. To compare the sinterstabilities, aging treatment was performed at 900 °C under H2:H2O:N2 = 1:10:1.25 for 50 h. Although the Ni dispersions decrease and Ni crystallite sizes increase for all of catalysts after the aging treatment, the La-promoted catalysts had higher Ni dispersion and smaller crystallite sizes than the Ni/MgAl2O4 catalyst owing to the enhancement of strong metal-support interactions. The catalytic test was carried out under CH4:H2O:CO2:H2:CO:N2 = 1:1.2:0.4:2:0.3:0.3 at 900 °C and 5 atm for 40 h. The Ni–2.5La/MgAl2O4 (aged) catalyst exhibited the highest activity and sinterstability owing to its high surface area and Ni dispersion. It was also confirmed that La promotion prevents the agglomeration of Ni particles through TEM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call