Abstract

Syngas, a mixture of CO, H2, and CO2, is produced by waste carbonaceous feedstocks gasification, which plays an important role in renewable energy production. This study investigated the biomethanation of syngas (45% H2, 30% CO, 25% CO2) in a trickle-bed reactor operated under mesophilic (35 °C), hyper-mesophilic (45 °C), and thermophilic conditions (55 °C). The results revealed that CH4 production increased with increasing temperature. CH4 production under steady-state conditions at the hyper-mesophilic and thermophilic temperatures were comparable; 92.2 ± 1.7 mmol/(Lbed∙d) and 93.9 ± 0.9 mmol/(Lbed∙d), respectively. On the contrary, electron losses in volatile fatty acids were the highest under mesophilic conditions. Additionally, digestate can be dosed as a nutrient addition and as a continuous inoculum source to ensure the optimal syngas biomethanation performance. The hyper-mesophilic conditions strategy illustrates possible energy savings for bioreactor heating with CH4 production comparable to thermophilic conditions, thus saving operating costs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call