Abstract
In order to utilize sustainable solar energy, cyclic operations of syngas production by methane reforming (reduction) and subsequent hydrogen production by water splitting (oxidation) were performed by using simulated solar-light irradiation to ZrO2-supported CeO2 particles which were coated on a SiC ceramic foam disk. This redox process is a promising chemical pathway for storage and transportation of solar heat by converting solar energy to chemical energy. By properly adjusting the methane reforming time, carbon deposition due to the undesirable methane decomposition could be avoided. The produced syngas had the H2/CO ratio of 2.0, which is suitable for the Fischer–Tropsch synthesis or methanol synthesis, and the produced pure hydrogen can be used for fuel cells. When the cyclic reactions were repeated several times at two temperatures (800 °C, 900 °C), the conversion of CeO2 and the H2 yield were reasonable and were maintained nearly constant from the second cycle, exhibiting good stability of the redox process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.