Abstract
Critical periods of developmental plasticity contribute to the refinement of neural connections that broadly shape brain development. These windows of plasticity are thought to be important for the maturation of perception, language, and cognition. Synaptic properties in cortical regions that underlie critical periods influence the onset and duration of windows, although it remains unclear how mechanisms that shape synapse development alter critical-period properties. In this study, we demonstrate that inactivation of a single copy of syngap1, which causes a surprisingly common form of sporadic, non-syndromic intellectual disability with autism in humans, induced widespread early functional maturation of excitatory connections in the mouse neocortex. This accelerated functional maturation was observed across distinct areas and layers of neocortex and directly influenced the duration of a critical-period synaptic plasticity associated with experience-dependent refinement of cortical maps. These studies support the idea that genetic control over synapse maturation influences the duration of critical-period plasticity windows. These data also suggest that critical-period duration links synapse maturation rates to the development of intellectual ability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.