Abstract

Synesthesia is traditionally regarded as a phenomenon in which an additional non-standard phenomenal experience occurs consistently in response to ordinary stimulation applied to the same or another modality. Recent studies suggest an important role of semantic representations in the induction of synesthesia. In the present proposal we try to link the empirically grounded theory of sensory-motor contingency and mirror system based embodied simulation/emulation to newly discovered cases of swimming style-color synesthesia. In the latter color experiences are evoked only by showing the synesthetes a picture of a swimming person or asking them to think about a given swimming style. Neural mechanisms of mirror systems seem to be involved here. It has been shown that for mirror-sensory synesthesia, such as mirror-touch or mirror-pain synesthesia (when visually presented tactile or noxious stimulation of others results in the projection of the tactile or pain experience onto oneself), concurrent experiences are caused by overactivity in the mirror neuron system responding to the specific observation. The comparison of different forms of synesthesia has the potential of challenging conventional thinking on this phenomenon and providing a more general, sensory-motor account of synesthesia encompassing cases driven by semantic or emulational rather than pure sensory or motor representations. Such an interpretation could include top-down associations, questioning the explanation in terms of hard-wired structural connectivity. In the paper the hypothesis is developed that the wide-ranging phenomenon of synesthesia might result from a process of hyperbinding between “too many” semantic attribute domains. This hypothesis is supplemented by some suggestions for an underlying neural mechanism.

Highlights

  • SYNESTHESIA Even though we are equipped with similar sensory mechanisms and cognitive functions, the way we perceive the world around us differs between subjects

  • Despite this vicarious SII activation, in daily life we are not confused about who is being touched. This is because the primary somatosensory cortex including the Brodmann’s area [BA] 3, is only recruited when we ourselves are being touched. This fact seems to shed some light on the functional foundation of the neural mechanisms underlying mirror-sensory synesthesia, explaining why certain people have conscious somatosensory experience during the observation of similar stimulation applied to another person

  • This paper undertakes the broader attempt of understanding the role of sensory-motor processes in synesthesia as part of a theory of mental representation as emulation

Read more

Summary

Introduction

SYNESTHESIA Even though we are equipped with similar sensory mechanisms and cognitive functions, the way we perceive the world around us differs between subjects. In the present proposal we try to link the empirically grounded theory of sensory-motor contingency and mirror system based embodied simulation/emulation to newly discovered cases of swimming style-color synesthesia.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.