Abstract

Experimental studies reporting murine Harderian gland (HG) tumourigenesis have been a NASA concern for many years. Studies used particle accelerators to produce beams that, on beam entry, consist of a single isotope also present in the galactic cosmic ray (GCR) spectrum. In this paper synergy theory is described, potentially applicable to corresponding mixed-field experiments, in progress, planned, or hypothetical. The “obvious” simple effect additivity (SEA) approach of comparing an observed mixture dose–effect relationship (DER) to the sum of the components’ DERs is known from other fields of biology to be unreliable when the components’ DERs are highly curvilinear. Such curvilinearity may be present at low fluxes such as those used in the one-ion HG experiments due to non-targeted (‘bystander’) effects, in which case a replacement for SEA synergy theory is needed. This paper comprises in silico modeling of published experimental data using a recently introduced, arguably optimal, replacement for SEA: incremental effect additivity (IEA). Customized open-source software is used. IEA is based on computer numerical integration of non-linear ordinary differential equations. To illustrate IEA synergy theory, possible rapidly-sequential-beam mixture experiments are discussed, including tight 95% confidence intervals calculated by Monte-Carlo sampling from variance–covariance matrices. The importance of having matched one-ion and mixed-beam experiments is emphasized. Arguments are presented against NASA over-emphasizing accelerator experiments with mixed beams whose dosing protocols are standardized rather than being adjustable to take biological variability into account. It is currently unknown whether mixed GCR beams sometimes have statistically significant synergy for the carcinogenesis endpoint. Synergy would increase risks for prolonged astronaut voyages in interplanetary space.

Highlights

  • The galactic cosmic ray (GCR) radiation field in interplanetary space includes ions that have high proton charge number Z and high kinetic energy (HZE ions)

  • The present paper describes synergy theory applicable to such mixed-field experiments

  • In this paper all one-ion beams for Z ≤ 2 are modeled by the same one-ion dose–effect relationship (DER), namely the DER for swift light ions, Eq (7)

Read more

Summary

Introduction

The galactic cosmic ray (GCR) radiation field in interplanetary space includes ions that have high proton charge number Z and high kinetic energy (HZE ions). Murine Harderian gland (HG) tumourigenesis induced, in accelerator beam experiments, by individual ions in the GCR spectrum, with some of the HZE having high RBEs, has long been a NASA concern (Fry et al 1985; Curtis et al 1992; Alpen et al 1993, 1994; Edwards 2001; Chang et al 2016; Norbury et al 2016). The present paper describes synergy theory applicable to such mixed-field experiments

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.