Abstract

The catalytic activities of single-atom catalysts (SACs) are strongly influenced by the local chemical environments of their substrates, by which the electronic structures of the SACs can be effectively tuned. Together with the freedom of available reactive metallic centers, it would be feasible to maximize the catalytic performance by means of a synergetic optimization in the chemical space spanned by the features of both the substrate and the catalytic center. In this work, using first-principles calculations, we systematically assessed the synergetic effect between the substrate geometric/electronic structures and the catalytic centers on the electrocatalytic nitrogen reduction reaction (NRR). Carbon nanotubes with different chirality, defects, and chemical functionalization were used to support 15 transition metal atoms. Three SACs, TiN4CNT(3,3), TiN4CNT(5,5), and VN4CNT(3,3), simultaneously possess high NRR selectivities (w.r.t hydrogen evolution) and low overpotentials of 0.35, 0.35, and 0.37 V, respectively. Electronic structure analysis elucidated that larger metal atoms anchored on CNTs with higher curvature and doped by N atoms facilitate the rupture of the N-N bond in *NH2NH2 to lower the overpotentials. The synergy of substrate chemical environments and single atomic catalysis is a promising strategy to optimize the catalytic performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call