Abstract

Haem biosynthesis appeared to be a target of malaria therapy because 5-aminolevulinic acid (ALA), a haem biosynthesis starting material, with light exposure or a high amount of ALA alone reduced Plasmodium falciparum growth to undetectable level. However, the administration of a high dose of ALA is unrealistic for clinical therapy. We found that Fe(2+) enhanced P. falciparum-killing potency of ALA and significantly inhibited the parasite growth. The intermediates of haem biosynthesis localized to the parasite organelles, and coproporphyrin III was the most accumulated intermediate. These novel findings may lead to development of a new anti-malarial drug using ALA and Fe(2+).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.