Abstract
Rainfall plays a crucial role in the removal of particulate matter (PM) from plant leaves, influencing PM retention and the environmental behaviour of harmful substances that accumulate in PM. This study examined the PM retention capacity, particle size distributions, and wash-off rates of leaf surface PM from three common green tree species in northern China during two natural rainfall events (light rain: 8.3 mm; heavy rain: 54.2 mm), to investigate the relationship between the leaf traits, PM retention capacity, and PM wash-off process. Our results found that leaf morphometric characteristics, such as leaf size, length, width, and aspect ratio (length-to-width), had a negative and significant correlations with the PM retention capacity, but had no significant correlation with the leaf surface PM wash-off rate. Smaller leaves with low aspect ratios exhibited greater stability under external disturbances than large leaves with high aspect ratios, resulting in a higher PM retention capacity and lower wash-off rate. Ridges and grooves enhanced the PM retention capacity by increasing the leaf roughness. Rainfall could wash off all particle size ranges of leaf surface PM without altering their mechanical composition. Larger particles were more easily washed off. Euonymus japonicus, with its small leaf size and low aspect ratio, exhibited the highest PM retention capacity. Its curled leaf shape also hindered light rain from washing off leaf surface PM. Forsythia suspensa, with denser grooves and ridges compared with Prunus serrulata, exhibited a rougher leaf surface and higher PM retention capacity. However, this roughness may reduce wettability, making it easier for runoff to form on the leaf surface and dislodge leaf surface PM, resulting in F. suspensa having the highest wash-off rate. Our results highlight the synergy of different leaf traits on PM retention capacity and the PM stability after rainfall.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.